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ABSTRACT

The pair correlation function is a useful tool to analyze spatial point patterns. It
is often estimated nonparametrically by a procedure such as kernel smoothing. This
article develops a data-driven method for the selection of the bandwidth involved in
the estimation. The proposed method uses the idea of least-squares cross-validation
which has been often applied for bandwidth selection in density estimation and
many other nonparametric estimations. The asymptotic property of the proposed
approach will be investigated under an increasing-domain setting in this article.
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1. INTRODUCTION

Consider a two-dimensional spatial point process N that is observed over a domain of

interest D. For an arbitrary Borel set B ⊂ R2, let |B| denote the area of B, and N(B) de-

note the number of events of N that fall in B. Let dx be an infinitesimal region containing

x ∈ R2. Following Diggle (2003), we define the first- and second-order intensity functions

of N as

λ(x) ≡ lim
|dx|→0

{
E[N(dx)]

|dx|
}

, and

λ2(x,y) ≡ lim
|dx|,|dy|→0

{
E[N(dx)N(dy)]

|dx||dy|
}

,

respectively. An important summary function based on the foregoing two intensity func-

tions is the pair correlation function (PCF), which is defined as follows:

g(x,y) =
λ2(x,y)

λ(x)λ(y)
.

A process is said to be second-order intensity reweighted stationary (SOIRS) if g(x,y) =

g(x − y) following Møller and Waagepetersen (2004). It is said to be second-order

reweighted isotropic (SOIRI) if g(x,y) = g(||x − y||), where || · || stands for Euclidean

norm.

The empirical PCF is often estimated by some nonparametric approach such as kernel

smoothing. A typical kernel estimator of g(·) for an SOIRS process admits the following

general form:

ĝ(t; h) =
∑∑

x6=y

k[(t− x + y)/h]

D(x,y)λ(x)λ(y)h2
, (1)

where k(·) is a two-dimensional kernel function and D(x,y) is an edge correction term,

e.g. D(x,y) = |(D−x)∩ (D−y)| as in Stoyan and Stoyan (2000). For a SOIRI process,

Møller and Waagepetersen (2004) suggested the following improved estimator for g(·):

ĝ(t; h) =
1

2π

∑∑

x6=y

k[(t− ||x− y||)/h]

D(x,y)λ(x)λ(y)||x− y||h, (2)
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where k now becomes a one-dimensional kernel function. In the stationary case, i.e.

λ(x) = λ for some positive constant λ, Stoyan and Stoyan (1994) gave the following

expression for the variance of ĝ(t; h):

V ar[ĝ(t; h)] =
g(t)

πtγ̄(t)λ2

∫ h

−h

k2
h(x)dx, (3)

where kh(x) = k(x/h)/h and γ̄(t) = 1− 4r/π + r2/π.

As in any nonparametric smoothing applications, the statistical properties of the result-

ing estimators, i.e., ĝ(t) given in (1) and (2), are highly dependent on the choice of the

bandwidth h. An inappropriate value of h may lead to an estimator with a large bias or

variance or both. It is thus necessary and important to develop data-driven methods which

can be used to automatically and objectively select the bandwidth h.

In the case that N is stationary, some general guidelines on the selection of h, although

not completely satisfactory, are available. For example, Stoyan and Stoyan (1994, p.285)

recommended using h = cλ−1/2 for Epanechnikov kernels with c = .1 − .2 for planar

point patterns of 50-300 points. Stoyan and Stoyan (2000) suggested an alternative method

which uses an approximation of the variance of the empirical PCF for given bandwidth and

lag; so the optimal h may depend on lag. Guan et al. (2005) recently proposed a subsam-

pling approach in selecting the bandwidth. However, all these procedures were developed

under the assumption that the underlying process is stationary and thus are not appropriate

for a more general SOIRS process. The purpose of this article is to develop a data-driven

procedure to select the bandwidth used to estimate the PCF for SOIRS processes. The

proposed procedure is a familiar least-squares cross-validation (LSCV) type of procedure

which can be easily applied in practice.

2. LEAST-SQUARES CROSS-VALIDATION

Let r be the largest lag for which the PCF is to be estimated and ĝ−(x,y)(·) be the empirical

PCF estimated by deleting events x and y. We impose an upper limit r on the lags here due
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to the fact that events separated by a large lag are often independent and thus the estimation

of the PCF for such lags may not be interesting. We propose to select h as the minimizer

of the following LSCV criterion:

M(h) =

∫

||u||≤r

[ĝ(u; h)]2du− 2
∑∑

0<||x−y||≤r

ĝ−(x,y)(x− y; h)

|D ∩D − x + y|λ(x)λ(y)
, (4)

where |D ∩ D − x + y| is a translation edge correction introduced by Ohser and Stoyan

(1981). Note that (4) has a similar form as the LSCV criterion used in density estima-

tions (e.g., Silverman 1998, p.49) and other nonparametric estimation in general (e.g., Hart

1997). However, it’s worth noting that a pair of events are left out each time while calcu-

lating the double sums in (4), which is in contrast to traditional cross-validation criteria

where only one observation is omitted each time.

We study the asymptotic properties of the LSCV criterion and the resulting bandwidth

under an increasing-domain setting. Specifically, consider a sequence of domains of in-

terest Dn. Let ∂Dn denote the boundary of Dn and |∂Dn| denote the length of ∂Dn. We

assume

|Dn| = O(n2) and |∂Dn| = O(n). (5)

Condition (5) simply says the domains of interest are truly spatial and need to increase in

all directions as n increases.

To quantify the dependence strength in N , we first define the kth-order cumulant func-

tion as follows:

Qk(x1, · · · ,xk) = lim
|dxi|→0

{
Cum[N(dx1), · · · , N(dxk)]

|dx1| · · · |dxk|
}

, i = 1, · · · , k,

where Cum(Y1, · · · , Yk) is the coefficient of ikt1 · · · tk in the Taylor series expansion of

log[E[exp(i
∑k

j=1 Yjtj)]] about the origin (e.g., Brillinger 1975). Further define

Ck(x1, · · · ,xk) =
Qk(x1, · · · ,xk)

λ(x1) · · ·λ(xk)
.
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We assume the following mild conditions on the spatial point process N :

Ck(x1, · · · ,xk) = Ck(x2 − x1, · · · ,xk − x1) for k = 1, · · · , 4, (6)

C2(u) is bounded, and
∫
R2 |C2(u)|du < ∞, (7)

∫
R2 |C3(u1,u2)|du1 < ∞,

∫
R2 |C3(u1,u1 + u2)|du1 < ∞ for all u2, (8)

∫
R2 |C4(u1,u2,u2 + u3)|du2 < ∞ for any u1,u3. (9)

Let Mn(h) denote M(h) defined in (4) but calculated on Dn. The following theorem

establishes the connection between Mn(h) and the integrated squared error defined as:

Rn(h) =

∫

||u||≤r

[ĝn(u; h)− g(u)]2du. (10)

Theorem 1. Assume that that N is an SOIRS spatial point process and that conditions

(5)-(10) hold. Then

E[Mn(h)] → E[Rn(h)]−
∫

||u||≤r

[g(u)]2du as n →∞.

Proof. First we define the following two functions of h:

An(h) =

∫

||u||≤r

ĝn(u; h)g(u)du, and

Bn(h) =
∑∑

0<||x−y||≤r

ĝ
−(x,y)
n (x− y; h)

|Dn ∩Dn − x + y|λ(x)λ(y)
.

Note that in order to prove Theorem 1, we only need to show E[Bn(h)] → E[An(h)]. Also

note that

An(h) =

∫

||u||≤r

{∑∑

x 6=y

k[(u− x + y)/h]

|Dn ∩Dn − x + y|λ(x)λ(y)h2

}
g(u)du

=
∑∑

x6=y

∫
||u||≤r

k[(u− x + y)/h]g(u)du

|Dn ∩Dn − x + y|λ(x)λ(y)h2
.

Thus

E[An(h)] =

∫ ∫

x,y∈Dn

{∫

||u||≤r

k[(u− x + y)/h]g(u)du

}
g(y − x)

|Dn ∩Dn − x + y|h2
dxdy
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=

∫

||u||≤r

∫

v∈Dn−Dn

k[(u− v)/h]g(u)g(v)

h2
dudv

=

∫ ∫ ∫ ∫

x,y,z,w∈Dn,||z−w||≤r

k[(z−w − x + y)/h]g(y − x)g(z−w)

|Dn ∩Dn − x + y||Dn ∩Dn − z + w|h2
dzdwdxdy.

Clearly E[An(h)] = O(1). To prove Theorem 1, we only need to show that

E[An(h)]− E[Bn(h)] → 0 as n →∞.

To show this, first note that

Bn(h) =
∑∑ ∑ ∑

0<||x−y||≤r,w 6=z

k[(x− y −w + z)/h]

|Dn ∩Dn − x + y||Dn ∩Dn −w + z|λ(x)λ(y)λ(w)λ(z)h2
.

Now define

g4(x,y, z) ≡ lim
|d0|,|dx|,|dy|,|dz|→0

{
E[N(d0)N(dx)N(dy)N(dz)]

|d0||dx||dy||dz|λ(0)λ(x)λ(y)λ(z)

}
,

Then

E[Bn(h)] =

∫ ∫ ∫ ∫

x,y,z,w∈Dn,||z−w||≤r

k[(z−w − x + y)/h]g4(y − x, z− x,w − x)

|Dn ∩Dn − x + y||Dn ∩Dn − z + w|h2
dzdwdxdy.

Define f(u1,u2,u3) = g4(u1,u2,u3)−g(y1)g(u2−u3). In terms of the defined cumulant

functions, lengthy but elementary algebra yields

f(u1,u2,u3) = C4(u1,u2,u3)

+ C3(u1,u2) + C3(u1,u3) + C3(u2,u3) + C3(u2 − u1,u3 − u1)

+ C2(u2)C2(u3 − u1) + C2(u3)C2(u2 − u1)

+ C2(u2) + C2(u3) + C2(u2 − u1) + C2(u3 − u1).

Thus

E[An(h)]− E[Bn(h)]

=

∫ ∫ ∫ ∫

x,y,z,w∈Dn,||z−w||≤r

k[(z−w − x + y)/h]f(y − x, z− x,w − x)

|Dn ∩Dn − x + y||Dn ∩Dn − z + w|h2
dzdwdxdy

=

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]f(u1,u2,u3)|Dn ∩Dn − u1 ∩Dn − u2 ∩Dn − u3|
|Dn ∩Dn + u1||Dn ∩Dn − u3 + u2|h2

du1du2du3.
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Further

|E[An(h)]− E[Bn(h)]| ≤
∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|f(u1,u2,u3)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

≤
∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C4(u1,u2,u3)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C3(u1,u2)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C3(u1,u3)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C3(u2,u3)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C3(u2 − u1,u3 − u1)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C2(u2)C2(u3 − u1)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C2(u3)C2(u2 − u1)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C2(u2)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C2(u3)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C2(u2 − u1)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3

+

∫ ∫ ∫

||u3−u2||≤r

k[(u3 − u2 + u1)/h]|C2(u3 − u1)|
|Dn ∩Dn − u3 + u2|h2

du1du2du3.

Denote the eleven terms on the right hand side of equality in the above as T1 until T11 in

turn and let u = u1, w = u2 and v = u3 − u2. A simple change of variable yields

T1 ≤
∫

||v||≤r

∫

R2

k[(v + u)/h]

|Dn ∩Dn − v|h2

[∫

R2

|C4(u,v + w,w)|dw
]

dudv → 0,
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T2 ≤
∫

||v||≤r

∫

R2

k[(v + u)/h]

|Dn ∩Dn − v|h2

[∫

R2

|C3(u,w)|dw
]

dudv → 0,

T6 ≤
∫

||v||≤r

∫

R2

k[(v + u)/h]

|Dn ∩Dn − v|h2

[∫

R2

|C2(w)C2(v + w − u)|dw
]

dudv → 0,

T8 ≤
∫

||v||≤r

∫

R2

k[(v + u)/h]

|Dn ∩Dn − v|h2

[∫

R2

|C2(w)|dw
]

dudv → 0.

Note that T3, T4 and T5 all go to zero following the result T2 → 0; T7 goes to zero fol-

lowing T6 → 0; and T9, T10 and T11 all go to zero following T8 → 0. Thus |E[An(h)] −
E[Bn(h)]| → 0.

3. SIMULATION

3.1 A modified estimator for the PCF

The PCF estimator given by (2) tends to have a large bias at small lags. To reduce the bias,

we consider the following modified version of (2):

ĝ∗(t; h) =
ĝ(t; h)∫ min(1,t/h)

−1
k(x)dx

, (11)

where ĝ(t; h) is as defined in (2). The denominator of (11) serves as a bias correction term.

It is equal to one if t ≥ h and thus ĝ∗(t; h) = ĝ(t; h), but is smaller than one if t < h,

which accounts for the fact that the distance between any two distinct events is larger than

zero. In the homogeneous Poisson process case, the corresponding estimator of (11) for

λ2(t) (= λ2) is

λ̂∗2(t; h) =
1

2π
∫ min(1,t/h)

−1
k(x)dx

∑∑

x6=y

k[(t− ||x− y||)/h]

D(x,y)||x− y||h .
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Note that λ̂∗2(t; h) is unbiased for λ2(t) since

E[λ̂∗2(t; h)] =
λ2

2π
∫ min(1,t/h)

−1
k(x)dx

∫

D

∫

D

k[(t− ||x− y||)/h]

D(x,y)||x− y||h dxdy

=
λ2

2π
∫ min(1,t/h)

−1
k(x)dx

∫

D−D

k[(t− ||u||)/h]

||u||h du

=
λ2

∫ min(1,t/h)

−1
k(x)dx

∫ t+h

0

k[(t− r)/h]

h
dr

= λ2.

Thus ĝ∗(t; h) is approximately unbiased for g(t). By applying the same argument that

was used to derive (3) in Stoyan et al. (1993), the variance of ĝ∗(t; h) can be analogously

obtained as follows:

V ar[ĝ∗(t; h)] =
g(t)

∫ min(1,t/h)

−1
k2(x)dx

πhtγ̄(t)λ2[
∫ min(1,t/h)

−1
k(x)dx]2

. (12)

3.2 Results

We applied the proposed bandwidth selection method to data generated by a Poisson pro-

cess, a Poisson cluster process (PCP), and a simple inhibition process (SIP) of the Matérn’s

first type (e.g., Diggle 2003). In each case, we simulated 500 realizations on a unit square.

The expected number of events per realization was 100 for the Poisson and PCP case but

400 for the SIP case. In the PCP case, we set the number of expected parents, ρ = 25, and

used a radially symmetric normal distribution (see, e.g., Diggle 2003) for the dispersion

of offspring relative to the parent. The spread parameter, σ, was set at .02 and .04, which

in turn correspond to relatively strong and weak clustering. In the SIP case, we set the

inhibition parameter δ = .015, i.e. no two events had an inter-event distance less than .015.

Note that the “optimal” bandwidth recommended by Stoyan and Stoyan (1994) is between

.01 and .02 in the Poisson and PCP case, but between .005 and .01 in the SIP case.

In the Poisson case, recall that ĝ∗(t; h) is approximately unbiased for g(t). Following

the expression of the variance of ĝ∗(t; h) in (12), we expected the “optimal” h to be as
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large as possible. In the simulation, we imposed an arbitrary upper limit (= .2) for h so as

to mimic the reality that we do not know if a process is Poisson or not in practice. For the

upper bound for the lags, we set r = .2 in the Poisson case, r = 4σ in the PCP case, and

r = 3δ in the SIP case.

Figure 1 presents the histograms for the bandwidths that were selected by minimizing

(4). In the PCF case, there was a clear pattern that as the strength of clustering weakened,

the selected “optimal” bandwidth became larger. In the Poisson process case, the selected

bandwidths were at or very close to .2 for an overwhelmingly large percentage of the time.

In this case, h = .2 indeed was the true “optimal” bandwidth among the bandwidthds being

considered in the simulation. In the SIP case, the selected bandwidths had a tendency to be

smaller than what was implied by Stoyan and Stoyan’s recommendation. We thus expected

that the PCF estimator using a bandwidth selected by the proposed procedure could better

capture the jump of the PCF at the hard-core distance (i.e. δ).

Figure 2 plots the variance and mean squared error (MSE) for ĝ∗(t; h) for three dif-

ferent bandwidth values. The first was obtained by minimizing (4); the second was from

Stoyan and Stoyan’s recommendation with c = .15; and the third was the true “optimal”

bandwidth. For the ease of presentation, we denote the three bandwidths by hcv, hss and

hop, respectively. From Figure 2, we see that ĝ∗(t; hcv) performed similarly to ĝ∗(t; hss)

in the PCP case with σ = .02, but performed much better than ĝ∗(t; hss) in the PCP case

with σ = .04 and in the Poisson case. The latter was because hss was generally much

smaller than hcv, which in turn led to a much larger variance. In the SIP case, the MSE for

ĝ∗(t; hcv) was smaller than that for ĝ∗(t; hss) around the hard core jumps. This confirmed

confirmed our conjecture that ĝ∗(t; hcv) could better capture this jump than ĝ∗(t; hss).
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Figure 1. Histograms for bandwidths that were selected by minimizing (4) for

the Poisson cluster process (PCP) with σ = .02, σ = .04, the Poisson process, and

the simple inhibition process (SIP).
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Figure 2. Variances (left panel) and mean squared errors (right panel) of the

empirical PCF. From top to bottom, the plots are for the Poisson cluster process

with σ = .02, σ = .04, the Poisson process, and the simple inhibition process. The

bandwidth being used are Stoyan & Stoyan’s h with c = .15 (· · ·), the estimated

optimal h by minimizing (4) (−−−), and the true optimal h (——).
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